
Web Request Broker API Draft Specification

1 Oracle Confidential - Do not distribute/forward outside Oracle

 Web Request Broker API

Production
March 24, 1996

Contributors
Mala Anand

Matt Bookman

Seshu Adunuthula

Ankur Sharma

For comments and updates contact:
Mala Anand, manand@us.oracle.com

Oracle confidential material
This document is a living document and subject to change. This document does not constitute
an agreement by any party to provide the software or technology described within.

This document contains information proprietary and confidential to Oracle Corporation and
must not be discussed with or disseminated to any persons or organizations that are not
bound by an Oracle disclosure agreement.

mailto:manand@us.oracle.com

Web Request Broker API Draft Specification

Oracle Confidential - Do not distribute/forward outside Oracle 2

Table of Contents

1 WRB API Overview 3

2 WRB API Design Goals & Concepts 3
2.1 Web Request Broker Dispatcher 4
2.2 Web Request Broker Application Engine 5

3 Application Programming Interface 6
3.1 WRB Application Callbacks 6

3.1.1 The Init Callback 6
3.1.2 The Exec Callback 6
3.1.3 The Shutdown Callback 6
3.1.4 The Reload Callback 6
3.1.5 Version Callback 7
3.1.6 Version Free Callback 7

3.2 WRB Listener Information Functions 7
3.2.1 WRB Get URL && WRB Get URI 7
3.2.2 WRB Get Environment Variable 7
3.2.3 WRB Get Environment 7
3.2.4 WRB Get Content 8
3.2.5 WRB Get Language 8
3.2.6 WRB Get Character Encoding 8
3.2.7 WRB Get Parsed Content 8
3.2.8 WRB Get Named Entry 8
3.2.9 WRB Get ORACLE_HOME 8
3.2.10 WRB Get Application Config 8
3.2.11 WRB Get Application Config Value 9

3.3 WRB Intervention Functions 9
3.3.1 WRB Client Read 9
3.3.2 WRB Client Write 9
3.3.3 WRB Client Write File (not implemented) 9
3.3.4 WRB Return HTTP Error 9
3.3.5 WRB Client Call Cartridge (not implemented) 10
3.3.6 WRB Client Set Timeout Call (not implemented) 10
3.3.7 WRB Return HTTP Redirect 10
3.3.8 WRB Close HTTP Header 10
3.3.9 WRB Log Message 10

4 WRB API Example Application. 11

5 Compiling and Linking Cartridges 13

6 Registering Cartridges 14
6.1 WRB Configuration File specification 14

6.1.1 [Apps] section 14
6.1.2 [AppsDirs] section 14
6.1.3 [AppProtection] 15
6.1.4 Cartridge configuration section 15

Web Request Broker API Draft Specification

3 Oracle Confidential - Do not distribute/forward outside Oracle

1 WRB API Overview

The Oracle Web Request Broker (WRB) provides a powerful distributed runtime environment
for developing and deploying industrial strength applications for the World Wide Web. The
WRB runtime platform enables application developers to write applications that are
independent of and work with a number of HTTP Servers.

The Web Request Broker (WRB) API provides a programmatic interface to the Oracle Web
Request Broker and enables applications developers to develop their applications (called
cartridges in this document) for the WRB. The WRB API provides a higher level API that
abstracts away the HTTP protocol while providing the necessary interfaces for application
development. In addition, the WRB API provides a rich set of API’s for authentication,
logging, and attribute management to facilitate application development.

The WRB API and the runtime system together enable web applications to be run on a
scalable, distributed high-performance back-end infrastructure. The following document
describes the WRB API in detail.

2 WRB API Design Goals & Concepts

The WRB API has been designed to address several deficiencies in the current HTTP Server
programmatic interfaces and to meet the following goals:

• The WRB provides a high performance, distributed and scalable application execution
framework. It provides applications developers to transparently run multiple instances of
their applications and provides the necessary load balancing and system scaling function-
ality to meet the load on the system. Application developers who develop their applica-
tions as WRB cartridges get these advantages of the WRB infrastructure for free.

• The WRB provides a more robust application development environment than NSAPI,
ISAPI and other HTTP Server programmatic interfaces:
• The WRB API provides a higher application level interface for web application

developers rather than hooks into the HTTP protocol at various interception points.
WRB-enabled applications do not need to aware of the HTTP protocol. The WRB
mediates all client requests to the appropriate cartridges and ensures fairness by
protecting and preventing cartridges from intercepting requests to other cartridges.

• WRB applications run in their own address space as independent entities. This
provides a level of robustness and reliability not possible with other HTTP Server
interfaces which require applications to be dynamically linked into the HTTP Server’s
address space. This can potentially cause applications to clobber each other’s memory
space and interfere destructively in signal handlers and other operating system
resources. WRB-enabled web applications can be managed and taken on-line and
off-line with no affect on other WRB-based web applications running on the same
WRB.

• The WRB provides a high level interface for database access for WRB-enabled
applications. This provides the power of the Oracle database for managing
configuration and other runtime information in a secure repository, and provides the

Web Request Broker API Draft Specification

Oracle Confidential - Do not distribute/forward outside Oracle 4

application with the infrastructure for maintaining distributed application state and
persistance management.

• Any WRB enabled application can invoke other WRB enabled applications as well as
make a HTTP request to any other HTTP Server. The WRB provides the distributed
infrastructure and dynamically distributes application loads across the network.

• The WRB API provides an easy migration path for current web applications.

Figure 1 illustrates the Web Request Broker Architecture.

2.1 Web Request Broker Dispatcher

The WRB Dispatcher is the component of the WRB that provides the interaction with different
underlying HTTP Servers. It is responsible for routing HTTP requests to the appropriate web
application cartridge over the distributed substrate. The HTTP server, in turn, interacts with
the web browser using HTTP. The WRB Dispatcher looks up and locates the appropriate
cartridge for a request from the WRB configuration and dispatches the request for execution to
that cartridge. The WRB can run multiple instances of the web cartridge, and the Dispatcher
selects an appropriate instance based on overall system load to deliver optimum application
performance. The WRB Dispatcher also authenticates the request against the WRB
configuration if the WRB-enabled application is using WRB Authentication Services.

Fig 1: Web Request Broker Architecture

HTTP Server

WRB Dispatcher

WRB Name ServerWRB Auth. Server

WRB App. Engine

WRB Application

WRB App. Engine

WRB Application WRB APIWRB API

Web Request Broker API Draft Specification

5 Oracle Confidential - Do not distribute/forward outside Oracle

2.2 Web Request Broker Application Engine

Application developers develop their cartridges as shared libraries (on Solaris) and register
them with the WRB Dispatcher. The cartridges are loaded in by the WRB Application Engine
when a request for that cartridge is received by the WRB Dispatcher. The WRB Application
Engine provides the runtime environment for WRB-enabled applications. It enables
WRB-enabled applications to receive and send data to the client, as well as the ability to call
other cartridges, which may be located on the same WRB or may be distributed across WRB’s
and other HTTP Servers.

The API’s provided by the WRB Application Engine are described below.

Web Request Broker API Draft Specification

Oracle Confidential - Do not distribute/forward outside Oracle 6

3 Application Programming Interface

The WRB API provides application developers with a comprehensive set of calls to build
applications independent of the underlying http daemons used. The API is organized as
follows:

• WRB Application Callbacks

• WRB Listener Information Functions

• WRB Intervention Functions

• WRB Utility Functions

3.1 WRB Application Callbacks

Cartridge developers need to provide the following WRB Application Callbacks that the WRB
Application Engine will invoke as described below upon receiving a request from a client for a
given cartridge. The bulk of processing by the WRB cartridge is done in the Exec Callback
where the callback function responds to the listener request and creates a response.

3.1.1 The Init Callback

WRBReturnCode WRB_Init(void **clientCtx);

This callback is invoked by WRB Application Engine on its initialization. The WRB cartridge
initializes its context in this routine which is then made available to the cartridge on
subsequent call backs.

3.1.2 The Exec Callback

WRBReturnCode WRB_Exec(void *WRBCtx, void *clientCtx);

This callback is invoked by WRB Application Engine upon receiving a HTTP Request. The
WRB cartridge is responsible for creating the response that is written back to the Listener in
this callback .

3.1.3 The Shutdown Callback

WRBReturnCode WRB_Shutdown(void *WRBCtx, void *clientCtx);

The WRB Application Engine invokes this call back to provide an graceful exit for the WRB
Client. Any memory allocated in the client context during the init callback should be
deallocated here.

3.1.4 The Reload Callback

WRBReturnCode WRB_Reload(void *WRBCtx, void *clientCtx);

Web Request Broker API Draft Specification

7 Oracle Confidential - Do not distribute/forward outside Oracle

This callback is not required, but is recommended. The WRB Application Engine invokes this
call back whenever the Web Listener has been signalled to reload its own configuration files.
The Web Listener halts all new incoming connections, allows existing transactions to
complete, and then signals each running WRB cartridge to execute its reload callback (if one
exists). If your application uses configuration information from the OWS_APPFILE then you
should call WRBGetAppConfig again, as these values may have.

3.1.5 Version Callback

char *WRB_Version();

The version callback enables the cartridge to return a character string with information about
the version of that cartridge. This callback is made by the ““wlctl2” utility

3.1.6 Version Free Callback

void WRB_Version_Free();

The version free callback enables the cartridge to free the memory allocated by the version
callback. This callback is made by the “wlctl2” utility after a successful call to the version
callback.

3.2 WRB Listener Information Functions

The following Listener Information functions provide cartridge developers with information,
if required, from the client as well as the underlying HTTP Server. All functions return
pointers to WRB Application Engine memory which the WRB client should not modify.

3.2.1 WRB Get URL && WRB Get URI

char *WRBGetURL(void* WRBCtx);

char *WRBGetURI(void* WRBCtx);

Returns the URL/URI received from the HTTP Server. The cartridge developers may extract
additional information from the URI/URL if required.

3.2.2 WRB Get Environment Variable

char *WRBGetEnvironmentVariable(void *WRBCtx, char *szEnvVar);

Returns the value of an environment variable. This provides a way for the WRB client to
access CGI Environment variables. Returns NULL if szEnvVar points to a invalid
environment variable.

3.2.3 WRB Get Environment

char **WRBGetEnvironment(void *WRBCtx);

Returns the HTTP Server environment as an array of null terminated strings with the syntax
varname=varvalue . Returns NULL in case of an error.

Web Request Broker API Draft Specification

Oracle Confidential - Do not distribute/forward outside Oracle 8

3.2.4 WRB Get Content

char *WRBGetContent(void *WRBCtx);

Returns either the Query String or the POST data content depending on the type of the request
method. Returns NULL in case on an error.

3.2.5 WRB Get Language

char *WRBGetLanguage(void *WRBCtx);

Returns the WRB Application Engine Language preferences. Returns NULL in case of an
error. On success, returns a comma delimited list of the “Accept” languages.

3.2.6 WRB Get Character Encoding

char *WRBGetCharacterEncoding(void *WRBCtx);

Returns the WRB Application Engine Character Encoding preferences. Returns NULL in case
of an error. On success, returns a comma delimited list of the “Accept” encodings

3.2.7 WRB Get Parsed Content

WRBReturnCode WRBGetParsedQueryString(void *WRBCtx, WRBEntry
**WRBEntries, int *numEntries);

typedef struct {
char *name;
char *value;

} WRBEntry;

Returns an array of name-value pairs after parsing the query string/POST data.

3.2.8 WRB Get Named Entry

char *WRBGetNamedEntry(char *entryName, WRBEntry *WRBEntries, int
numEntries);

Returns a name/value pair from a list of entries generated by a call to WRBGetParsedContent.
Returns NULL on error

3.2.9 WRB Get ORACLE_HOME

char *WRBGetORACLE_HOME(void *WRBCtx);

Returns the ORACLE_HOME which was set when the Web Listener was started

3.2.10 WRB Get Application Config

char **WRBGetAppConfig(void *WRBCtx);

Returns the configuration information for the current application. The structure of the return
value is a pointer to an array of pointers to character strings. These character strings are of the
form “name=val”. The information is retrieved from the OWS_APPFILE at the time the Web
Listener starts up. An example might be:

Web Request Broker API Draft Specification

9 Oracle Confidential - Do not distribute/forward outside Oracle

[MyCartidge]
myparam1 = val1
myparam2 = val2

3.2.11 WRB Get Application Config Value

char *WRBGetConfigVal(void *WRBCtx, char *name);

Returns a named item for the application’s configuration. The information is retrieved from
the OWS_APPFILE at the time the Web Listener starts up.

3.3 WRB Intervention Functions

These functions are invoked by the WRB cartridge to respond to an incoming client request.

3.3.1 WRB Client Read

ssize_t WRBClientRead(void *WRBCtx, char *szData, int *nBytes);

The WRB Client invokes this function to read the POST data of a HTTP request from the WRB
Application Engine. In the current implementation, if a client is going to read POST data it
must do so bwfore sending any data (through WRBClientWrite) back to the Web Listener. The
return value is the number of bytes read.

3.3.2 WRB Client Write

ssize_t WRBClientWrite(void *WRBCtx, char *szData, int nBytes);

The WRB cartridge invokes this function to send data to the client. The return value is the
number of bytes written.

3.3.3 WRB Client Write File (not implemented)

WRBReturnCode WRBClientWriteFile(void *WRBCtx, char *szFileName,
WRBFileType nFileType);

The WRB client invokes this function to send the contents of a file to the client. The file can be
located either in the HTTP Servers physical or virtual file system. The file type is specified in
the nFileType parameter.

3.3.4 WRB Return HTTP Error

ssize_t WRBHTTPReturnError(void *WRBCtx, WRBErrorCode, nErrorCode,
char *szErrorMesg, boolean close);

Invoked by the WRB client when it would like a standard HTTP error sent back to the
browser. This call must occur before any other calls to WRBClientWrite, as it is a wrapper
which sends : Status <nErrorCode> <szErrorMesg> The “close” flag set to false indicates that
you wish to send additional HTTP header information and that you will close the HTTP
header explicitly with a call to WRBCloseHTTPHeader.

Web Request Broker API Draft Specification

Oracle Confidential - Do not distribute/forward outside Oracle 10

3.3.5 WRB Client Call Cartridge (not implemented)

WRBReturnCode WRBCallCartridge(void *WRBCtx, char *request);

The WRB client calls this function to invoke a request which could be satisfied by a cartridge
running on the local WRB, or by a remote HTTP Server or WRB.

3.3.6 WRB Client Set Timeout Call (not implemented)

WRBReturnCode WRBClientSetTimeOut(void *WRBCtx, int nTimeOut,
WRBReturnCode (*WRBClientCleanUP)(*void WRBCtx));

This function can be called by the WRB client to set a time out for long running calls. If WRB
Client makes this call the WRB Application Engine sets up a timer to interrupt processing a
HTTP request and return to the LIstener with a timedout error response. The WRB client can
set a callback WRBClientCleanUp to clean up the client in case of a timeout. WRB
Application Engine discards any response from the WRB client once the timeout has
happened. If no callback is provided a default callback is used.

3.3.7 WRB Return HTTP Redirect

ssize_t WRBReturnHTTPRedirect(void *WRBCtx, char *szURI, boolean
close);

Invoked by the WRB client when it would like a standard HTTP error sent back to the
browser. This call must come before any other calls to WRBClientWrite, as it is just a wrapper
which sends : Status: <nErrorCode> <szErrorMesg>

The “close” flag set to FALSE indicates that you wish to send addition HTTP header
information and that you will close the HTTP header explicitly with a call to
WRBCloseHTTPHeader.

3.3.8 WRB Close HTTP Header

ssize_t WRBCloseHTTPHeaer(void *WRBCtx);

Invoked by the WRB client when it would like to close an HTTP header. Generally used after
calls to WRBReturnHTTPError or WRBReturnHTTPRedirect with the “close” flag set to
FALSE.

3.3.9 WRB Log Message

void WRBLogMessage(void *WRBCtx, char *szMessage, int nSeverity);

Logs the message szMessage to a file ?/ows2/log/wrb_<pid>.c where ? is the
ORACLE_HOME and pid is the processid of the Web Request Broker. Currently nSeverity is
not used and reserved for future versions.

Web Request Broker API Draft Specification

11 Oracle Confidential - Do not distribute/forward outside Oracle

4 WRB API Example Application.

The following section describes a simple example of Web Application written using the WRB
API functions. This application prints hello world in the browser window

#ifndef ORATYPES_ORACLE
include <oratypes.h>
#endif

#ifndef WRB_ORACLE
include <wrb.h>
#endif

WRBReturnCode test_init();
WRBReturnCode test_exec();
WRBReturnCode test_shut();
/***/
/* Client-provided callback functions */
/***/
/* The following function defintions should be provided by theWRBclient
/* such that the WRB can invoke the users application.The WRB client */
/* must have a single entry point, which gets specified in the [Apps] */
/* section of the WRB configuration file. */
/* */
/* This entry point function should fill in the WRBCallbacks table that
/* it is passed, such that the WRB can call the init, exec, and shut
/* routines respectively (explained below). */
/* */
/* A simple example of a valid entry function would be: */
/* WRBReturnCode mydyn_init(WRBCallbacks *WRBcalls)
/* { */
/* WRBcalls->init_WRBCallback = my_init; */
/* WRBcalls->exec_WRBCallback = my_exec; */
/* WRBcalls->shut_WRBCallback = my_shut; */
/* */
/* return WRB_DONE */
/* } */

WRBReturnCode testentry (WRBCalls)
WRBCallbacks *WRBCalls;
{

WRBCalls->init_WRBCallback = test_init;
WRBCalls->exec_WRBCallback = test_exec;
WRBCalls->shut_WRBCallback = test_shut;

return (WRB_DONE);
}

Web Request Broker API Draft Specification

Oracle Confidential - Do not distribute/forward outside Oracle 12

WRBReturnCode test_init(WRBCtx, clientcxp)
void *WRBCtx;
void **clientcxp;
{

return (WRB_DONE);
}

WRBReturnCode test_exec(WRBCtx, clientcxp)
void *WRBCtx;
void *clientcxp;
{

WRBClientWrite(WRBCtx, “Content-type: text/html\n\n
HelloWorld\n”, 40);

return (WRB_DONE);
}

WRBReturnCode test_shut(WRBCtx, clientcxp)
void *WRBCtx;
void *clientcxp;
{

return (WRB_DONE);
}

Web Request Broker API Draft Specification

13 Oracle Confidential - Do not distribute/forward outside Oracle

5 Compiling and Linking Cartridges

This section describes the makefile for building Web Request Broker cartridges.

#Makefile for building WRB Cartridges
#====================================

LIBHOME = $(ORACLE_HOME)/ows2/wrbsdk/lib
INCHOME = $(ORACLE_HOME)/ows2/wrbsdk/inc
LDCOM = -g -xs -L$(LIBHOME)
SLIBS = -lnsl -lm -lsocket -ldl -laio

all: helloworld.so

helloworld.o:helloworld.c
$(CC)-c -o $@ -g -I$(INCHOME) helloworld.c

#The link line for the final .so dynamic library is given below
helloworld.so: helloworld.o

$(CC) $(LDCOM) -o $@ -G helloworld.o $(SLIBS)

Web Request Broker API Draft Specification

Oracle Confidential - Do not distribute/forward outside Oracle 14

6 Registering Cartridges

6.1 WRB Configuration File specification

All new cartridges will need to register themselves in the WRB config file which is read by the
server at startup. The config file has the same name as the listener configuration file but has an
extension .app

In the WRB config file the following sections will need to be filled.

6.1.1 [Apps] section

• APPS - This tag will define your cartridge type

• Object Path - This tag will define the full path from where the shared resides.

• Entry Point - This entry point function should fill in the WRBCallbacks table that it is
passed, such that the WRB can call the init, exec, and shut routines restively.

• Min - This entry indicates the minimum number of processes that need to be started
up for each cartridge/application

• Max - This entry indicates the maximum number of processes that will be allocated
for each cartridge/application use.

[Apps]
;
; APP Object Path Entry Point Min Max
; === =========== =========== === ===
OWA /private/oracle/ows2/lib/libndwoa.so ndwoadinit 0 100
SSI /vobs/ws/src/ssi/ndwussi.so ndwussinit 0 100
JAVA /private/oracle/ows2/lib/libjava.so ojsdinit 0 100

6.1.2 [AppsDirs] section

• Virtual Path - this entry specifies the virtual path that all URL’s will be refernced by

• APP - Same as above APP entry

Web Request Broker API Draft Specification

15 Oracle Confidential - Do not distribute/forward outside Oracle

• Physical Path - The actual physical path that the applications will read all their data files
from.

[AppDirs]
;
; Virtual Path APP Physical Path
; ============ === =============
/ssi SSI /private/oracle/ows2/sample/ssi
/hr/owa OWA /private/oracle/ows2/bin
/tr/owa OWA /private/oracle/ows2/bin
/owa_dba/owa OWA /private/oracle/ows2/bin
/java JAVA /private/oracle/ows2/java

6.1.3 [AppProtection]

• Virtual Path: The virtual path that needs to be protected. For more information refer to the
protection section in listener configuration.

• Protection Scheme: Authentication or Restriction schemes or a combination of both. Refer
to the protection section in listener configuration for more information.

/owa_dba/owa/* Basic(Admin Server)
/hr/owa Basic(registered) | IP(oracle)

6.1.4 Cartridge configuration section

Each cartrdige can specfify its own configuration information which is availabe to it thru the
WRB_GetAppConfig call. The configuration information should be in the format A = B.

[SSI]
EnableLiveHTML = TRUE
ParseHTMLExtn = FALSE
EnableExecTag = TRUE
ExtensionList = html shtml lhtml
MaxRequests = 1

Web Request Broker API Draft Specification

Oracle Confidential - Do not distribute/forward outside Oracle 16

Appendix A - References

Table 1: References

SpyGlass Server ADI Spyglass Server Reference Manual Version 1.1.
http://www.spyglass.com:4040/support

 Internet Server API A specification for Writing Internet Server Applications.
http://www.microsoft.com/intdev/inttech/isapi.htm

 Netscape Server API The Netscape Server API. http://home.netscape.com

Open Market FastCGI FastCGI Specification. http://www.openmarket.com/fcgi-spec.html

http://www.spyglass.com:4040/support
http://www.microsoft.com/ntdev/inttech/isapi.htm
http://home.netscape.com
http://www.openmarket.com/fcgi-spec.html

	WRB API Overview
	WRB API Design Goals & Concepts
	Application Programming Interface
	WRB API Example Application
	Compiling and Linking Cartridges
	Registering Cartridges
	Appendix A - References

